Down but Not Out: The Role of MicroRNAs in Hibernating Bats

نویسندگان

  • Lihong Yuan
  • Fritz Geiser
  • Benfu Lin
  • Haibo Sun
  • Jinping Chen
  • Shuyi Zhang
  • Yun Zheng
چکیده

MicroRNAs (miRNAs) regulate many physiological processes through post-transcriptional control of gene expression and are a major part of the small noncoding RNAs (snRNA). As hibernators can survive at low body temperatures (Tb) for many months without suffering tissue damage, understanding the mechanisms that enable them to do so are of medical interest. Because the brain integrates peripheral physiology and white adipose tissue (WAT) is the primary energy source during hibernation, we hypothesized that both of these organs play a crucial role in hibernation, and thus, their activity would be relatively increased during hibernation. We carried out the first genomic analysis of small RNAs, specifically miRNAs, in the brain and WAT of a hibernating bat (Myotis ricketti) by comparing deeply torpid with euthermic individual bats using high-throughput sequencing (Solexa) and qPCR validation of expression levels. A total of 196 miRNAs (including 77 novel bat-specific miRNAs) were identified, and of these, 49 miRNAs showed significant differences in expression during hibernation, including 33 in the brain and 25 in WAT (P≤0.01 &│logFC│≥1). Stem-loop qPCR confirmed the miRNA expression patterns identified by Solexa sequencing. Moreover, 31 miRNAs showed tissue- or state-specific expression, and six miRNAs with counts >100 were specifically expressed in the brain. Putative target gene prediction combined with KEGG pathway and GO annotation showed that many essential processes of both organs are significantly correlated with differentially expressed miRNAs during bat hibernation. This is especially evident with down-regulated miRNAs, indicating that many physiological pathways are altered during hibernation. Thus, our novel findings of miRNAs and Interspersed Elements in a hibernating bat suggest that brain and WAT are active with respect to the miRNA expression activity during hibernation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Expression of Mature MicroRNAs Involved in Muscle Maintenance of Hibernating Little Brown Bats, Myotis lucifugus: A Model of Muscle Atrophy Resistance

Muscle wasting is common in mammals during extended periods of immobility. However, many small hibernating mammals manage to avoid muscle atrophy despite remaining stationary for long periods during hibernation. Recent research has highlighted roles for short non-coding microRNAs (miRNAs) in the regulation of stress tolerance. We proposed that they could also play an important role in muscle ma...

متن کامل

Cytochemical Differences in Kidneys from Winter-hibernating and Aroused Bats (myotis Lucifugus), with Particular Reference to the Golgi Zone

Kidneys from winter bats (Myotis lucifugus) were removed and fixed in cold formalin-calcium while the animals were in the following states: (a) natural hibernation; (b) arousal from hibernation for 24 hours; (c) laboratory maintained hibernation; and (d) no hibernation since the previous winter. With fixed frozen sections, the lead salt method of Wachstein and Meisel with adenosine triphosphate...

متن کامل

Homocysteine Homeostasis and Betaine-Homocysteine S-Methyltransferase Expression in the Brain of Hibernating Bats

Elevated homocysteine is an important risk factor that increases cerebrovascular and neurodegenerative disease morbidity. In mammals, B vitamin supplementation can reduce homocysteine levels. Whether, and how, hibernating mammals, that essentially stop ingesting B vitamins, maintain homocysteine metabolism and avoid cerebrovascular impacts and neurodegeneration remain unclear. Here, we compare ...

متن کامل

Antioxidant Defenses in the Brains of Bats during Hibernation.

Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS) ...

متن کامل

Skin Lesions in European Hibernating Bats Associated with Geomyces destructans, the Etiologic Agent of White-Nose Syndrome

White-nose syndrome (WNS) has claimed the lives of millions of hibernating insectivorous bats in North America. Its etiologic agent, the psychrophilic fungus Geomyces destructans, causes skin lesions that are the hallmark of the disease. The fungal infection is characterized by a white powdery growth on muzzle, ears and wing membranes. While WNS may threaten some species of North American bats ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015